Current Concepts in Upper-Extremity Motion Analysis: Room To Grow?

Published:October 11, 2022DOI:https://doi.org/10.1016/j.jhsa.2022.07.016
      Kinematic motion analysis (KMA) is well established in the assessment of gait and lower-extremity kinematics; however, its application to upper-extremity (UE) pathology has been limited. This review provides a concise overview of information related to the KMA technology that is pertinent to the clinician. Advantages of KMA for UE assessment are discussed, along with barriers to implementation. An example of KMA used for perioperative assessment of a patient undergoing a distal humerus osteotomy for the correction of arthrogrypotic internal rotation deformity is provided to illustrate its clinical feasibility. Kinematic motion analysis has exciting potential to advance the evaluation and management of UE disorders; however, broad application will require validation and standardization of UE-specific KMA protocols in addition to decreased logistical and cost burdens.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hand Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kontaxis A.
        • Cutti A.G.
        • Johnson G.R.
        • Veeger H.E.J.
        A framework for the definition of standardized protocols for measuring upper-extremity kinematics.
        Clin Biomech (Bristol Avon). 2009; 24: 246-253
        • Paterno M.V.
        • Schmitt L.C.
        • Ford K.R.
        • et al.
        Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport.
        Am J Sports Med. 2010; 38: 1968-1978
        • Esquenazi A.
        Gait analysis in lower-limb amputation and prosthetic rehabilitation.
        Phys Med Rehabil Clin N Am. 2014; 25: 153-167
        • Dugan E.L.
        • Shilt J.S.
        The role of motion analysis in surgical planning for gait abnormalities in cerebral palsy.
        Phys Med Rehabil Clin N Am. 2020; 31: 107-115
        • Hung L.W.
        • Lu H.Y.
        • Chang C.H.
        • Chen T.Y.
        • Wang T.M.
        • Lu T.W.
        Effects of internal fixation for mid-shaft clavicle fractures on shoulder kinematics during humeral elevations.
        Front Bioeng Biotechnol. 2021; 9710787
        • Turgut E.
        • Duzgun I.
        • Baltaci G.
        Effects of scapular stabilization exercise training on scapular kinematics, disability, and pain in subacromial impingement: a randomized controlled trial.
        Arch Phys Med Rehabil. 2017; 98: 1915-1923.e3
        • Lefèvre-Colau M.M.
        • Nguyen C.
        • Palazzo C.
        • et al.
        Kinematic patterns in normal and degenerative shoulders. Part II: review of 3-D scapular kinematic patterns in patients with shoulder pain, and clinical implications.
        Ann Phys Rehabil Med. 2018; 61: 46-53
        • Hamann N.
        • Heidemann J.
        • Heinrich K.
        • et al.
        Effect of carpometacarpal joint osteoarthritis, sex, and handedness on thumb in vivo kinematics.
        J Hand Surg Am. 2014; 39: 2161-2167
        • Topley M.
        • Richards J.G.
        A comparison of currently available optoelectronic motion capture systems.
        J Biomech. 2020; 106109820
        • Mousavi S.J.
        • Tromp R.
        • Swann M.C.
        • White A.P.
        • Anderson D.E.
        Between-session reliability of opto-electronic motion capture in measuring sagittal posture and 3-D ranges of motion of the thoracolumbar spine.
        J Biomech. 2018; 79: 248-252
        • Boser Q.A.
        • Valevicius A.M.
        • Lavoie E.B.
        • et al.
        Cluster-based upper body marker models for three-dimensional kinematic analysis: comparison with an anatomical model and reliability analysis.
        J Biomech. 2018; 72: 228-234
        • Ivester J.C.
        • Cyr A.J.
        • Harris M.D.
        • Kulis M.J.
        • Rullkoetter P.J.
        • Shelburne K.B.
        A reconfigurable high-speed stereo-radiography system for sub-millimeter measurement of in vivo joint kinematics.
        J Med Device. 2015; 9: 1-7
        • Colyer S.L.
        • Evans M.
        • Cosker D.P.
        • Salo A.I.T.
        A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system.
        Sports Med Open. 2018; 4: 24
        • Cutti A.G.
        • Giovanardi A.
        • Rocchi L.
        • Davalli A.
        • Sacchetti R.
        Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors.
        Med Biol Eng Comput. 2008; 46: 169-178
        • Morrow M.M.B.
        • Lowndes B.
        • Fortune E.
        • Kaufman K.R.
        • Hallbeck M.S.
        Validation of inertial measurement units for upper body kinematics.
        J Appl Biomech. 2017; 33: 227-232
        • Cutti A.G.
        • Parel I.
        • Kontaxis A.
        Upper extremity models for clinical movement analysis.
        in: Müller B. Wolf S.I. Brueggemann G.-P. Handbook of Human Motion. Springer, 2017
        • Williams S.
        • Schmidt R.
        • Disselhorst-Klug C.
        • Rau G.
        An upper body model for the kinematical analysis of the joint chain of the human arm.
        J Biomech. 2006; 39: 2419-2429
        • Wu G.
        • van Der Helm F.C.
        • Veeger H.E.
        • et al.
        ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—part II: shoulder, elbow, wrist and hand.
        J Biomech. 2005; 38: 981-992
        • Tsushima H.
        • Morris M.E.
        • McGinley J.
        Test-retest reliability and inter-tester reliability of kinematic data from a three-dimensional gait analysis system.
        J Jpn Phys Ther Assoc. 2003; 6: 9-17
        • Cappozzo A.
        • Catani F.
        • Leardini A.
        • Benedetti M.G.
        • Della Croce U.D.
        Position and orientation in space of bones during movement: experimental artefacts.
        Clin Biomech (Bristol Avon). 1996; 11: 90-100
        • Cutti A.G.
        • Cappello A.
        • Davalli A.
        In vivo validation of a new technique that compensates for soft tissue artefact in the upper-arm: preliminary results.
        Clin Biomech (Bristol, Avon). 2006; 21: S13-S19
        • Collins T.D.
        • Ghoussayni S.N.
        • Ewins D.J.
        • Kent J.A.
        A six degrees-of-freedom marker set for gait analysis: repeatability and comparison with a modified Helen Hayes set.
        Gait Posture. 2009; 30: 173-180
        • Lempereur M.
        • Brochard S.
        • Leboeuf F.
        • Rémy-néris O.
        Validity and reliability of 3D marker based scapular motion analysis: a systematic review.
        J Biomech. 2014; 47: 2219-2230
        • Valevicius A.M.
        • Jun P.Y.
        • Hebert J.S.
        • Vette A.H.
        Use of optical motion capture for the analysis of normative upper body kinematics during functional upper limb tasks: a systematic review.
        J Electromyogr Kinesiol. 2018; 40: 1-15
        • Schwarz A.
        • Kanzler C.M.
        • Lambercy O.
        • Luft A.R.
        • Veerbeek J.M.
        Systematic review on kinematic assessments of upper limb movements after stroke.
        Stroke. 2019; 50: 718-727
        • Villepinte C.
        • Verma A.
        • Dimeglio C.
        • De Boissezon X.
        • Gasq D.
        Responsiveness of kinematic and clinical measures of upper-limb motor function after stroke: a systematic review and meta-analysis.
        Ann Phys Rehabil Med. 2021; 64101366
        • Han J.J.
        • Kurillo G.
        • Abresch R.T.
        • Nicorici A.
        • Bajcsy R.
        Validity, reliability, and sensitivity of a 3D vision sensor-based upper extremity reachable workspace evaluation in neuromuscular diseases.
        PLoS Curr. 2013; 5
        • Russo S.A.
        • Loeffler B.J.
        • Zlotolow D.A.
        • Kozin S.H.
        • Richards J.G.
        • Ashworth S.
        Limited glenohumeral cross-body adduction in children with brachial plexus birth palsy: a contributor to scapular winging.
        J Pediatr Orthop. 2015; 35: 240-245
        • Chapman R.M.
        • Torchia M.T.
        • Bell J.-E.
        • Van Citters D.W.
        Continuously monitoring shoulder motion after total shoulder arthroplasty: maximum elevation and time spent above 90° of elevation are critical metrics to monitor.
        J Shoulder Elbow Surg. 2019; 28: 1505-1514
        • Chalmers P.N.
        • Wimmer M.A.
        • Verma N.N.
        • et al.
        The relationship between pitching mechanics and injury: a review of current concepts.
        Sports Health. 2017; 9: 216-221
        • Rab G.
        • Petuskey K.
        • Bagley A.
        A method for determination of upper extremity kinematics.
        Gait Posture. 2002; 15: 113-119
        • Lugo R.
        • Kung P.
        • Ma C.B.
        Shoulder biomechanics.
        Eur J Radiol. 2008; 68: 16-24
        • Wall L.B.
        • Calhoun V.
        • Roberts S.
        • Goldfarb C.A.
        Distal humerus external rotation osteotomy for hand position in arthrogryposis.
        J Hand Surg Am. 2017; 42: 473.e1-473.e7
        • Yoon T.-L.
        Validity and reliability of an inertial measurement unit-based 3D angular measurement of shoulder joint motion.
        J Kor Phys Ther. 2017; 29: 145-151
        • Aaron D.H.
        • Stegink Jansen C.W.
        Development of the functional dexterity test (FDT): construction, validity, reliability, and normative data.
        J Hand Ther. 2003; 16: 12-21
        • Gogola G.R.
        • Velleman P.F.
        • Xu S.
        • Morse A.M.
        • Lacy B.
        • Aaron D.
        Hand dexterity in children: administration and normative values of the functional dexterity test.
        J Hand Surg Am. 2013; 38: 2426-2431
        • Bahm J.
        Upper limb multifactorial movement analysis in brachial plexus birth injury.
        J Brachial Plex Peripher Nerve Inj. 2016; 11: e1-e9

      Linked Article