Editor's Choice| Volume 48, ISSUE 1, P37-45, January 2023

Download started.


Long-Term Outcomes of Biceps Rerouting for Flexible Supination Contractures in Children With Brachial Plexus Birth Injuries

Published:December 22, 2021DOI:


      Forearm supination contractures occur in 7% of children with brachial plexus birth injuries (BPBI). Biceps rerouting is proposed when pronation has deteriorated but is passively correctable to at least 0° (neutral). The purpose of this investigation was to evaluate long-term outcomes of biceps rerouting for this indication, including magnitude and maintenance of correction, complications, and subsequent osteotomy.


      We conducted a retrospective review of all children with BPBI and forearm supination contractures treated with biceps rerouting alone, for the above indications, from 1993 to 2017 with at least 2 years follow-up. Demographic information, BPBI characteristics, surgical details, and ranges of motion were obtained from medical records. Pre- and postoperative active pronation (AP) and supination (AS), elbow flexion contracture, and arc of forearm rotation (Arc) were analyzed using linear mixed-effect models.


      Twenty-five children (13 females; 13 left forearms; 15 global BPBI) underwent biceps rerouting at age 7 ± 3 years and were followed for 6 ± 3 years. Before surgery, the mean AP and AS were 6° ± 29° and 62° ± 27°, respectively. At the final follow-up, the mean AP, AS, and Arc were 39° ± 36°, 18° ± 34°, and 57° ± 42°, respectively. AP was significantly improved and AS was significantly decreased by 2 years after surgery and at the final follow-up. Neither Arc nor elbow flexion contracture changed significantly. Two of 25 (8%) children underwent subsequent forearm osteotomy.


      Biceps rerouting in children with BPBI improves the forearm position when pronation is deteriorating by shifting the arc from supination to pronation without decreasing the arc of motion or worsening elbow flexion contractures. There is a low risk of complications and a limited need for subsequent forearm osteotomy. These results are maintained over time. When performed before passive pronation is reduced beyond neutral, this procedure may prevent severe supination contractures and reduce the need for forearm osteotomy.

      Type of study/level of evidence

      Therapeutic IV.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Hand Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Foad S.L.
        • Mehlman C.T.
        • Ying J.
        The epidemiology of neonatal brachial plexus palsy in the United States.
        J Bone Joint Surg Am. 2008; 90: 1258-1264
        • DeFrancesco C.J.
        • Shah D.K.
        • Rogers B.H.
        • Shah A.S.
        The epidemiology of brachial plexus birth palsy in the United States: declining incidence and evolving risk factors.
        J Pediatr Orthop. 2019; 39: e134-e140
        • Pondaag W.
        • Malessy M.J.
        • van Dijk J.G.
        • Thomeer R.T.
        Natural history of obstetric brachial plexus palsy: a systematic review.
        Dev Med Child Neurol. 2004; 46: 138-144
        • Hoeksma A.F.
        • ter Steeg A.M.
        • Nelissen R.G.H.H.
        • van Ouwerkerk W.J.R.
        • Lankhorst G.J.
        • de Jong B.A.
        Neurological recovery in obstetric brachial plexus injuries: an historical cohort study.
        Dev Med Child Neurol. 2004; 46: 76-83
        • Nikolaou S.
        • Peterson E.
        • Kim A.
        • Wylie C.
        • Cornwall R.
        Impaired growth of denervated muscle contributes to contracture formation following neonatal brachial plexus injury.
        J Bone Joint Surg Am. 2011; 93: 461-470
        • Nikolaou S.
        • Hu L.
        • Cornwall R.
        Afferent innervation, muscle spindles, and contractures following neonatal brachial plexus injury in a mouse model.
        J Hand Surg Am. 2015; 40: 2007-2016
        • Nikolaou S.
        • Cramer A.A.
        • Hu L.
        • Goh Q.
        • Millay D.P.
        • Cornwall R.
        Proteasome inhibition preserves longitudinal growth of denervated muscle and prevents neonatal neuromuscular contractures.
        JCI Insight. 2019; 4e128454
        • Hogendoorn S.
        • van Overvest K.L.J.
        • Watt I.
        • Duijsens A.H.B.
        • Nelissen R.G.H.H.
        Structural changes in muscle and glenohumeral joint deformity in neonatal brachial plexus palsy.
        J Bone Joint Surg Am. 2010; 92: 935-942
        • Sheffler L.C.
        • Lattanza L.
        • Sison-Williamson M.
        • James M.A.
        Biceps brachii long head overactivity associated with elbow flexion contracture in brachial plexus birth palsy.
        J Bone Joint Surg Am. 2012; 94: 289-297
        • Hoeksma A.F.
        • Ter Steeg A.M.
        • Dijkstra P.
        • Nelissen R.G.H.H.
        • Beelen A.
        • de Jong B.A.
        Shoulder contracture and osseous deformity in obstetrical brachial plexus injuries.
        J Bone Joint Surg Am. 2003; 85: 316-322
        • Sheffler L.C.
        • Lattanza L.
        • Hagar Y.
        • Bagley A.
        • James M.A.
        The prevalence, rate of progression, and treatment of elbow flexion contracture in children with brachial plexus birth palsy.
        J Bone Joint Surg Am. 2012; 94: 403-409
        • Yam A.
        • Fullilove S.
        • Sinisi M.
        • Fox M.
        The supination deformity and associated deformities of the upper limb in severe birth lesions of the brachial plexus.
        J Bone Joint Surg Br. 2009; 91: 511-516
        • Zancolli E.A.
        • Zancolli E.R.
        Palliative surgical procedures in sequelae of obstetric palsy.
        Hand Clin. 1988; 4: 643-669
        • Hankins S.M.
        • Bezwada H.P.
        • Kozin S.H.
        Corrective osteotomies of the radius and ulna for supination contracture of the pediatric and adolescent forearm secondary to neurologic injury.
        J Hand Surg Am. 2006; 31: 118-124
        • Allende C.A.
        • Gilbert A.
        Forearm supination deformity after obstetric paralysis.
        Clin Orthop Relat Res. 2004; 426: 206-211
        • Manske P.R.
        • McCarroll H.R.
        • Hale R.
        Biceps tendon rerouting and percutaneous osteoclasis in the treatment of supination deformity in obstetrical palsy.
        J Hand Surg Am. 1980; 5: 153-159
        • Metsaars W.P.
        • Henseler J.F.
        • Nagels J.
        • Nelissen R.G.
        Supination contractures in brachial plexus birth palsy: long-term upper limb function and recurrence after forearm osteotomy or nonsurgical treatment.
        J Hand Surg Am. 2017; 42: 925.e1-925.e11
        • Kozin S.H.
        Treatment of the supination deformity in the pediatric brachial plexus patient.
        Tech Hand Up Extrem Surg. 2006; 10: 87-95
        • Gladstein A.Z.
        • Sachleben B.
        • Ho E.S.
        • Anthony A.
        • Clarke H.M.
        • Hopyan S.
        Forearm pronation osteotomy for supination contracture secondary to obstetrical brachial plexus palsy: a retrospective cohort study.
        J Pediatr Orthop. 2017; 37: e357-e363
        • van Kooten E.O.
        • Ishaque M.A.
        • Winters H.A.H.
        • Ritt M.J.P.F.
        • van der Sluijs H.A.
        Pronating radius osteotomy for supination deformity in children with obstetric brachial plexus palsy.
        Tech Hand Up Extrem Surg. 2008; 12: 34-37
        • Rolfe K.W.
        • Green T.A.
        • Lawrence J.F.
        Corrective osteotomies and osteosynthesis for supination contracture of the forearm in children.
        J Pediatr Orthop. 2009; 29: 406-410
        • Wang A.A.
        • Hutchinson D.T.
        • Coleman D.A.
        One-bone forearm fusion for pediatric supination contracture due to neurologic deficit.
        J Hand Surg Am. 2001; 26: 611-616
        • Metsaars W.P.
        • Nagels J.
        • Pijls B.G.
        • Langenhoff J.M.
        • Nelissen R.G.H.H.
        Treatment of supination deformity for obstetric brachial plexus injury: a systematic review and meta-analysis.
        J Hand Surg Am. 2014; 39: 1948-1958.e2
        • Ozkan T.
        • Aydin A.
        • Ozer K.
        • Ozturk K.
        • Durmaz H.
        • Ozkan S.
        A surgical technique for pediatric forearm pronation: brachioradialis rerouting with interosseous membrane release.
        J Hand Surg Am. 2004; 29: 22-27
        • Zancolli E.A.
        Paralytic supination contracture of the forearm.
        J Bone Joint Surg Am. 1967; 49: 1275-1284
        • Metsaars W.P.
        • Biegstraaten M.
        • Nelissen R.G.H.H.
        Biceps rerouting after forearm osteotomy: an effective treatment strategy for severe supination deformity in obstetric plexus palsy.
        J Hand Microsurg. 2017; 9: 1-5
        • DeDeugd C.M.
        • Shin A.Y.
        • Shaughnessy W.J.
        Derotational pronation-producing osteotomy of the radius and biceps tendon rerouting for supination contractures in neonatal brachial plexus palsy patients: a review of 20 cases.
        J Pediatr Orthop. 2019; 39: e366-e372
        • Nagy L.
        • Jankauskas L.
        • Dumont C.E.
        Correction of forearm malunion guided by the preoperative complaint.
        Clin Orthop Relat Res. 2008; 466: 1419-1428
        • Roth K.C.
        • Walenkamp M.M.J.
        • van Geenen R.C.I.
        • Reijman M.
        • Verhaar J.A.N.
        • Colaris J.W.
        Factors determining outcome of corrective osteotomy for malunited paediatric forearm fractures: a systematic review and meta-analysis.
        J Hand Surg Eur Vol. 2017; 42: 810-816
        • Morrey B.F.
        • Askew L.J.
        • Chao E.Y.
        A biomechanical study of normal functional elbow motion.
        J Bone Joint Surg Am. 1981; 63: 872-877
        • Valone L.C.
        • Waites C.
        • Tartarilla A.B.
        • et al.
        Functional elbow range of motion in children and adolescents.
        J Pediatr Orthop. 2020; 40: 304-309
        • Sardelli M.
        • Tashjian R.Z.
        • MacWilliams B.A.
        Functional elbow range of motion for contemporary tasks.
        J Bone Joint Surg Am. 2011; 93: 471-477
        • Pereira B.P.
        • Thambyah A.
        • Lee T.
        Limited forearm motion compensated by thoracohumeral kinematics when performing tasks requiring pronation and supination.
        J Appl Biomech. 2012; 28: 127-138
        • Ezaki M.
        • Oishi S.N.
        Technique of forearm osteotomy for pediatric problems.
        J Hand Surg Am. 2012; 37: 2400-2403
        • Hutchinson D.T.
        • Wang A.A.
        • Ryssman D.
        • Brown N.A.T.
        Both-bone forearm osteotomy for supination contracture: a cadaver model.
        J Hand Surg Am. 2006; 31: 968-972
        • Schottstaedt E.R.
        • Larsen L.J.
        • Bost F.C.
        The surgical reconstruction of the upper extremity paralyzed by poliomyelitis.
        J Bone Joint Surg Am. 1958; 40-A: 633-643
        • Grilli F.
        Il trapianto del bicepite brachiale in funzione pronatoria.
        Arch Putti. 1959; 12: 359-371