Comparison of the Orientation Angles of Volar Locking Plate Distal Ulnar Locking Screw for Distal Radius Fractures


      This study aimed to measure the angles between the screw and plate in 16 commercially available volar locking plates (VLPs) to determine the fixable intra-articular fragment size.


      Ulnar orientation angles (axial plane) and elevation angles (sagittal plane) between the distal ulnar screw and plate were measured for 14 fixed-angle VLPs and 2 variable-angle VLPs. Each VLP was simulated by 2 surgeons to sit distally and ulnarly in 10 normal distal radius models. The distance between the screw and distal/ulnar end of the distal radius on both the volar and dorsal sides, designated as the longitudinal/lateral distance, was measured to identify the fixable size of the 2 intra-articular fragments: volar lunate fragment and dorsoulnar fragment. Relationships between the ulnar orientation angle and dorsal-side lateral length as well as the elevation angle and dorsal-side longitudinal distance were analyzed.


      The ulnar orientation and elevation angles ranged from 6.5° to 16.9° and −5.8° to 34.3°, respectively, for fixed-angle VLPs and −12.5° to 32.2° and 3.1° to 42.1°, respectively, for variable-angle VLPs. The minimal longitudinal distances on the volar side with the fixed- and variable-angle VLPs were 4.3–10.9 mm and 5.8–5.9 mm, respectively. On the dorsal side, the lateral distance negatively correlated with the ulnar orientation angle (R = −0.74), and the longitudinal distance negatively correlated with the elevation angle (R = −0.89).


      The Depuy Synthes variable-angle VLP provides an advantage for fixating small intra-articular fragments. For fixed-angle VLPs, the Mizuho VLP provides an advantage for fixating small volar lunate fragments. A narrow dorsoulnar fragment can be fixated using a plate with a large ulnar orientation angle, such as the Zimmer Biomet or Mizuho VLP.

      Clinical relevance

      The ability of each individual commercially available plate to capture specific intra-articular fragments should be known.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Hand Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Orbay J.L.
        • Fernandez D.L.
        Volar fixation for dorsally displaced fractures of the distal radius: a preliminary report.
        J Hand Surg. 2002; 27: 205-215
        • Saving J.
        • Wahlgren S.S.
        • Olsson K.
        • et al.
        Nonoperative treatment compared with volar locking plate fixation for dorsally displaced distal radial fractures in the elderly: a randomized controlled trial.
        J Bone Joint Surg. 2019; 101: 961-969
        • Fok M.W.
        • Klausmeyer M.A.
        • Fernandez D.L.
        • Orbay J.L.
        • Bergada A.L.
        Volar plate fixation of intra-articular distal radius fractures: a retrospective study.
        J Wrist Surg. 2013; 2: 247-254
        • Thorninger R.
        • Madsen M.L.
        • Waever D.
        • Borris L.C.
        • Rolfing J.H.
        Complications of volar locking plating of distal radius fractures in 576 patients with 3.2 years follow-up.
        Injury. 2017; 48: 1104-1109
        • Harness N.G.
        • Jupiter J.B.
        • Orbay J.L.
        • Raskin K.B.
        • Fernandez D.L.
        Loss of fixation of the volar lunate facet fragment in fractures of the distal part of the radius.
        J Bone Joint Surg. 2004; 86: 1900-1908
        • Beck J.D.
        • Harness N.G.
        • Spencer H.T.
        Volar plate fixation failure for volar shearing distal radius fractures with small lunate facet fragments.
        J Hand Surg. 2014; 39: 670-678
        • Orbay J.L.
        • Rubio F.
        • Vernon L.L.
        Prevent collapse and salvage failures of the volar rim of the distal radius.
        J Wrist Surg. 2016; 5: 17-21
        • Obata H.
        • Baba T.
        • Futamura K.
        • et al.
        Difficulty in fixation of the volar lunate facet fragment in distal radius fracture.
        Case Rep Orthop. 2017; 2017: 1-5
        • Ikeda K.
        • Osamura N.
        • Tada K.
        Fixation of an ulnodorsal fragment when treating an intra-articular fracture in the distal radius.
        Hand Surg. 2014; 19: 139-144
        • Lee J.I.
        • Cho J.H.
        • Lee S.J.
        The effects of the Frag-Loc (R) compression screw on distal radius fracture with a displaced dorsoulnar fragment.
        Arch Orthop Trauma Surg. 2015; 135: 1315-1321
        • Ruch D.S.
        • Tocci F.L.
        • Grier A.J.
        • et al.
        Integrated compression screw stabilization of the dorsal lunate facet in intra-articular distal radius fractures.
        J Hand Surg. 2020; 45: 361.e1-361.e7
        • Wichlas F.
        • Haas N.P.
        • Disch A.
        • Machó D.
        • Tsitsilonis S.
        Complication rates and reduction potential of palmar versus dorsal locking plate osteosynthesis for the treatment of distal radius fractures.
        J Orthop Traumatol. 2014; 15: 259-264
        • Soong M.
        • Earp B.E.
        • Bishop G.
        • Leung A.
        • Blazar P.
        Volar locking plate implant prominence and flexor tendon rupture.
        J Bone Joint Surg. 2011; 93: 328-335
        • Bergsma M.
        • Brown K.
        • Doornberg J.
        • Sierevelt I.
        • Jaarsma R.
        • Jadav B.
        Distal radius volar plate design and volar prominence to the watershed line in clinical practice: comparison of Soong grading of 2 common plates in 400 patients.
        J Hand Surg. 2019; 44: 853-859
        • Othman A.Y.
        Fixation of dorsally displaced distal radius fractures with volar plate.
        J Trauma Acute Care Surg. 2009; 66: 1416-1420
        • Oka K.
        • Murase T.
        • Moritomo H.
        • Goto A.
        • Sugamoto K.
        • Yoshikawa H.
        Accuracy analysis of three-dimensional bone surface models of the forearm constructed from multidetector computed tomography data.
        Int J Med Robot. 2009; 5: 452-457
        • Wu G.
        • van der Helm F.C.T.
        • Veeger H.E.J.
        • et al.
        ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—part II: shoulder, elbow, wrist and hand.
        J Biomech. 2005; 38: 981-992
        • Drobetz H.
        • Black A.
        • Davies J.
        • Buttner P.
        • Heal C.
        Screw placement is everything: risk factors for loss of reduction with volar locking distal radius plates.
        World J Orthop. 2018; 9: 203-209
        • Ruch D.S.
        • Wray III, W.H.
        • Papadonikolakis A.
        • Richard M.J.
        • Leversedge F.J.
        • Goldner R.D.
        Corrective osteotomy for isolated malunion of the palmar lunate facet in distal radius fractures.
        J Hand Surg. 2010; 35: 1779-1786
        • Miyashima Y.
        • Kaneshiro Y.
        • Yano K.
        • Teraura H.
        • Sakanaka H.
        • Uemura T.
        Size and stabilization of the dorsoulnar fragment in AO C3-type distal radius fractures.
        Injury. 2019; 50: 2004-2008
        • Collins E.D.
        • Vossoughi F.
        A three-dimensional analysis of the sigmoid notch.
        Orthop Rev. 2011; 3: e17
        • Shivdas S.
        • Hashim M.S.
        • Ahmad T.S.
        A three-dimensional virtual morphometry study of the sigmoid notch of the distal radius.
        J Orthop Surg. 2018; 26 (2309499018802504)
        • Oura K.
        • Oka K.
        • Kawanishi Y.
        • Sugamoto K.
        • Yoshikawa H.
        • Murase T.
        Volar morphology of the distal radius in axial planes: a quantitative analysis.
        J Orthop Res. 2015; 33: 496-503