Advertisement
Scientific Article| Volume 45, ISSUE 12, P1185.e1-1185.e8, December 2020

Measurement of Scaphoid Bone Microarchitecture: A Computed Tomography Imaging Study and Implications for Screw Placement

      Purpose

      High bone density and quality is associated with improved screw fixation in fracture fixation. The objective of this study was to assess bone density and quality in the proximal and distal scaphoid to determine optimum sites for placement of 2 screws in scaphoid fracture fixation.

      Methods

      Twenty-nine cadaveric human scaphoid specimens were harvested and scanned using micro–computed tomography. Bone density (bone volume fraction) and bone quality (relative bone surface area, trabecular number, and trabecular thickness) were evaluated in 4 quadrants within each of the proximal and distal scaphoid.

      Results

      The proximal radial quadrant of the scaphoid had significantly greater bone volume than the distal ulnar (mean difference, 33.2%) and distal volar quadrants (mean difference, 32.3%). There was a significantly greater trabecular number in the proximal radial quadrant than in the distal ulnar (mean difference, 16.7%) and in the distal volar quadrants (mean difference, 15.9%) and between the proximal ulnar and the distal ulnar quadrants (mean difference, 12%). There was a significantly greater bone surface area in the proximal radial and distal radial quadrants than in the distal ulnar and distal volar quadrants. There were no significant differences in trabecular thickness between the 8 analyzed quadrants

      Conclusions

      Although there are differences in bone volume, trabecular number, and bone surface area between the proximal pole of the scaphoid and that of the distal pole, there were no significant differences in the bone quality (trabecular thickness, trabecular number, and relative bone surface area) and density (bone volume fraction) between the 4 quadrants of the proximal or distal pole of the cadaveric scaphoids studied.

      Clinical relevance

      Insertion of 2 headless compression screws can be determined by ease of surgical access and ease of screw positioning and not by differences in bone quality or density of the proximal or distal scaphoid.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hand Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hove L.M.
        Epidemiology of scaphoid fractures in Bergen, Norway.
        Scand J Plast Reconstr Surg Hand Surg. 1999; 33: 423-426
        • Cooney W.P.
        • Dobyns J.H.
        • Linscheid R.L.
        Fractures of the scaphoid: a rational approach to management.
        Clin Orthop Relat Res. 1980; 149: 90-97
        • Kawamura K.
        • Chung K.C.
        Treatment of scaphoid fractures and nonunions.
        J Hand Surg Am. 2008; 33: 988-997
        • Kupperman A.
        • Breighner R.
        • Saltzman E.
        • Sneag D.
        • Wolfe S.
        • Lee S.
        Ideal starting point and trajectory of a screw for the dorsal approach to scaphoid fractures.
        J Hand Surg Am. 2018; 43: 993-999
        • McCallister W.V.
        • Knight J.
        • Kaliappan R.
        • Trumble T.E.
        Central placement of the screw in simulated fractures of the scaphoid waist: a biomechanical study.
        J Bone Joint Surg Am. 2003; 85: 72-77
        • Gruszka D.S.
        • Burkhart K.J.
        • Nowak T.E.
        • Achenbach T.
        • Rommens P.M.
        • Muller L.P.
        The durability of the intrascaphoid compression of headless compression screws: in vitro study.
        J Hand Surg Am. 2012; 37: 1142-1150
        • Augat P.
        • Burger J.
        • Schorlemmer S.
        • Henke T.
        • Peraus M.
        • Claes L.
        Shear movement at the fracture site delays healing in a diaphyseal fracture model.
        J Orthop Res. 2003; 21: 1011-1017
        • Alonso-Vazquez A.
        • Lauge-Pedersen H.
        • Lidgren L.
        • Taylor M.
        The effect of bone quality on the stability of ankle arthrodesis. A finite element study.
        Foot Ankle Int. 2004; 25: 840-850
        • Ab-Lazid R.
        • Perilli E.
        • Ryan M.K.
        • Costi J.J.
        • Reynolds K.J.
        Pullout strength of cancellous screws in human femoral heads depends on applied insertion torque, trabecular bone microarchitecture and areal bone mineral density.
        J Mech Behav Biomed Mater. 2014; 40: 354-361
        • Fowler J.R.
        • Ilyas A.M.
        Headless compression screw fixation of scaphoid fractures.
        Hand Clin. 2010; 26: 351-361
        • Dodds S.D.
        • Panjabi M.M.
        • Slade III, J.F.
        Screw fixation of scaphoid fractures: a biomechanical assessment of screw length and screw augmentation.
        J Hand Surg Am. 2006; 31: 405-413
        • Mandaleson A.
        • Tham S.K.
        • Lewis C.
        • Ackland D.C.
        • Ek E.T.
        Scaphoid fracture fixation in a nonunion model: a biomechanical study comparing 3 types of fixation.
        J Hand Surg Am. 2018; 43: 221-228
        • Lee S.B.
        • Kim H.J.
        • Chun J.M.
        • et al.
        Osseous microarchitecture of the scaphoid: cadaveric study of regional variations and clinical implications.
        Clin Anat. 2012; 25: 203-211
      1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy.
        JAMA. 2001; 285: 785-795
        • Swanstrom M.M.
        • Morse K.W.
        • Lipman J.D.
        • Hearns K.A.
        • Carlson M.G.
        Variable bone density of scaphoid: importance of subchondral screw placement.
        J Wrist Surg. 2018; 7: 66-70
        • Manske S.L.
        • Zhu Y.
        • Sandino C.
        • Boyd S.K.
        Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT.
        Bone. 2015; 79: 213-221
        • Bouxsein M.L.
        • Boyd S.K.
        • Christiansen B.A.
        • Guldberg R.E.
        • Jepsen K.J.
        • Muller R.
        Guidelines for assessment of bone microstructure in rodents using micro-computed tomography.
        J Bone Miner Res. 2010; 25: 1468-1486
        • Hildebrand T.
        • Ruegsegger P.
        A new method for the model-independent assessment of thickness in three-dimensional images.
        J Microscopy. 1997; 185: 67-75
        • Bond C.D.
        • Shin A.Y.
        • McBride M.T.
        • Dao K.D.
        Percutaneous screw fixation or cast immobilization for nondisplaced scaphoid fractures.
        J Bone Joint Surg Am. 2001; 83: 483-488
        • Arora R.
        • Gschwentner M.
        • Krappinger D.
        • Lutz M.
        • Blauth M.
        • Gabl M.
        Fixation of nondisplaced scaphoid fractures: making treatment cost effective. Prospective controlled trial.
        Arch Orthop Trauma Surg. 2007; 127: 39-46
        • Dias J.J.
        • Wildin C.J.
        • Bhowal B.
        • Thompson J.R.
        Should acute scaphoid fractures be fixed? A randomized controlled trial.
        J Bone Joint Surg Am. 2005; 87: 2160-2168
        • Trumble T.E.
        • Gilbert M.
        • Murray L.W.
        • Smith J.
        • Rafijah G.
        • McCallister W.V.
        Displaced scaphoid fractures treated with open reduction and internal fixation with a cannulated screw.
        J Bone Joint Surg Am. 2000; 82: 633-641
        • Wirth A.J.
        • Goldhahn J.
        • Flaig C.
        • Arbenz P.
        • Muller R.
        • van Lenthe G.H.
        Implant stability is affected by local bone microstructural quality.
        Bone. 2011; 49: 473-478
        • Turner I.G.
        • Rice G.N.
        Comparison of bone screw holding strength in healthy bovine and osteoporotic human cancellous bone.
        Clin Mater. 1992; 9: 105-107
        • Faran K.J.
        • Ichioka N.
        • Trzeciak M.A.
        • Han S.
        • Medige J.
        • Moy O.J.
        Effect of bone quality on the forces generated by compression screws.
        J Biomech. 1999; 32: 861-864
        • Trumble T.E.
        • Clarke T.
        • Kreder H.J.
        Non-union of the scaphoid. Treatment with cannulated screws compared with treatment with Herbert screws.
        J Bone Joint Surg Am. 1996; 78: 1829-1837
        • Diederichs G.
        • Link T.M.
        • Kentenich M.
        • et al.
        Assessment of trabecular bone structure of the calcaneus using multi-detector CT: correlation with microCT and biomechanical testing.
        Bone. 2009; 44: 976-983
        • Guenoun D.
        • Foure A.
        • Pithioux M.
        • et al.
        Correlative analysis of vertebral trabecular bone microarchitecture and mechanical properties: a combined ultra-high field (7 Tesla) MRI and biomechanical investigation.
        Spine (Phila Pa 1976). 2017; 42: E1165-E1172
        • Qu G.
        • von Schroeder H.P.
        Trabecular microstructure at the human scaphoid nonunion.
        J Hand Surg Am. 2008; 33: 650-655
        • Ruffoni D.
        • Wirth A.J.
        • Steiner J.A.
        • Parkinson I.H.
        • Muller R.
        • van Lenthe G.H.
        The different contributions of cortical and trabecular bone to implant anchorage in a human vertebra.
        Bone. 2012; 50: 733-738
        • Seebeck J.
        • Goldhahn J.
        • Stadele H.
        • Messmer P.
        • Morlock M.M.
        • Schneider E.
        Effect of cortical thickness and cancellous bone density on the holding strength of internal fixator screws.
        J Orthop Res. 2004; 22: 1237-1242
        • Rovinsky D.
        • Haskell A.
        • Liu Q.
        • Paiement G.D.
        • Robinovitch S.
        Evaluation of a new method of small fragment fixation in a medial malleolus fracture model.
        J Orthop Trauma. 2000; 14: 420-425
        • Lazenby R.A.
        • Angus S.
        • Cooper D.M.
        • Hallgrimsson B.
        A three-dimensional microcomputed tomographic study of site-specific variation in trabecular microarchitecture in the human second metacarpal.
        J Anat. 2008; 213: 698-705
        • Tocheri M.W.
        • Razdan A.
        • Williams R.C.
        • Marzke M.W.
        A 3D quantitative comparison of trapezium and trapezoid relative articular and nonarticular surface areas in modern humans and great apes.
        J Hum Evol. 2005; 49: 570-586
        • Garala K.
        • Taub N.A.
        • Dias J.J.
        The epidemiology of fractures of the scaphoid: impact of age, gender, deprivation and seasonality.
        Bone Joint J. 2016; 98-B: 654-659
        • Diederichs G.
        • Korner J.
        • Goldhahn J.
        • Linke B.
        Assessment of bone quality in the proximal humerus by measurement of the contralateral site: a cadaveric analyze.
        Arch Orthop Trauma Surg. 2006; 126: 93-100
        • Zech S.
        • Goesling T.
        • Hankemeier S.
        • et al.
        Differences in the mechanical properties of calcaneal artificial specimens, fresh frozen specimens, and embalmed specimens in experimental testing.
        Foot Ankle Int. 2006; 27: 1126-1136
        • Topp T.
        • Muller T.
        • Huss S.
        • et al.
        Embalmed and fresh frozen human bones in orthopedic cadaveric studies: which bone is authentic and feasible?.
        Acta Orthop. 2012; 83: 543-547
        • Mori S.
        Bone quality and strength relating with bone remodeling [in Japanese].
        Clin Calcium. 2016; 26: 17-27
        • Hernandez C.J.
        How can bone turnover modify bone strength independent of bone mass?.
        Bone. 2008; 42: 1014-1020
        • Ratti C.
        • Vulcano E.
        • Canton G.
        • Marano M.
        • Murena L.
        • Cherubino P.
        Factors affecting bone strength other than osteoporosis.
        Aging Clin Exp Res. 2013; 25: S9-S11
        • Viguet-Carrin S.
        • Garnero P.
        • Delmas P.D.
        The role of collagen in bone strength.
        Osteoporos Int. 2006; 17: 319-336