Bone Graft Substitutes: Current Concepts and Future Expectations

Published:January 28, 2019DOI:https://doi.org/10.1016/j.jhsa.2018.10.032
      Owing to its osteoinductive and osteoconductive properties and the presence of osteogenic cells, freshly harvested autologous bone graft is the gold standard for skeletal reconstruction where there is inadequate native bone. Whereas these characteristics are difficult to replicate, engineered, commercially available bone graft substitutes aim to achieve a comparable osseoregenerative profile. This work furnishes the reader with an understanding of the predominant classes of bone graft substitutes available for reconstruction of upper extremity bone defects following trauma or oncological surgery. We review bone graft substitutes with respect to their mechanisms of action, their advantages and disadvantages, and their indications and contraindications. We provide examples of bone graft substitutes in clinical use and outline comparative costs. We also describe the future directions for this specific aspect of reconstructive surgery with a focus on the role of bioactive glass.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hand Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • World Health Organization
        The burden of musculoskeletal conditions at the start of the new millennium.
        World Health Organ Tech Rep Ser. 2003; 919: 1-218
        • Patel M.M.
        • Catalano L.W.
        Bone graft substitutes: current uses in hand surgery.
        J Hand Surg Am. 2009; 34: 555-556
        • Giannoudis P.V.
        • Einhorn T.A.
        • Marsh D.
        Fracture healing: the diamond concept.
        Injury. 2007; 38: 3-6
        • Dreesmann H.
        Ueber Knochenplombierung.
        Beitr Klin Chir. 1892; 9: 804-810
        • Pietrzak W.S.
        • Ronk R.
        Calcium sulfate bone void filler: a review and a look ahead.
        J Craniofac Surg. 2000; 11: 327-333
        • Bucholz R.W.
        Nonallograft osteoconductive bone graft substitutes.
        Clin Orthop Relat Res. 2002; 395: 44-52
        • Brown M.E.
        • Zou Y.
        • Peyyala R.
        • et al.
        Testing of a bioactive, moldable bone graft substitute in an infected, critically sized segmental defect model.
        J Biomed Mater Res B Appl Biomater. 2018; 106: 1878-1886
        • Jepegnanam T.S.
        • von Schroeder H.P.
        Rapid resorption of calcium sulfate and hardware failure following corrective radius osteotomy: 2 case reports.
        J Hand Surg Am. 2012; 37: 477-480
        • Holmes R.E.
        Bone regeneration within a coralline hydroxyapatite implant.
        Plast Reconstr Surg. 1979; 63: 626-633
        • Hing K.A.
        • Wilson L.F.
        • Buckland T.
        Comparative performance of three ceramic bone graft substitutes.
        Spine J. 2007; 7: 475-490
        • Shah A.M.
        • Jung H.
        • Skirboll S.
        Materials used in cranioplasty: a history and analysis.
        Neurosurg Focus. 2014; 36: E19
        • Editors of Encyclopedia Britannica
        Polymethyl methacrylate | chemical compound | Britannica.com.
        (Available at:)
        • Charnley J.
        Acrylic cement in orthopaedic surgery.
        Br J Surg. 1970; 57: 1970
        • Blank A.T.
        • Riesgo A.M.
        • Gitelis S.
        • Rapp T.B.
        Bone grafts, substitutes, and augments in benign orthopaedic conditions: current concepts.
        Bull NYU Hosp Jt Dis. 2017; 75: 119-128
        • Glowacki J.
        Demineralized bone and BMPs: basic science and clinical utility.
        J Oral Maxillofac Surg. 2015; 73: S126-S131
        • Styrkarsdottir U.
        • Cazier J.B.
        • Kong A.
        • et al.
        Linkage of osteoporosis to chromosome 20p12 and association to BMP2.
        PLoS Biol. 2003; 1
        • Hinsenkamp M.
        • Collard J.-F.
        Growth factors in orthopaedic surgery: demineralized bone matrix versus recombinant bone morphogenetic proteins.
        Int Orthop. 2015; 39: 137-147
        • Cuellar A.
        • Reddi A.H.
        Cell biology of osteochondromas: bone morphogenic protein signalling and heparan sulphates.
        Int Orthop. 2013; 37: 1591-1596
        • Fu R.
        • Selph S.
        • Mcdonagh M.
        • Peterson K.
        • Tiwari A.
        • Chou R.
        Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review nand meta-analysis.
        Ann Intern Med. 2013; 158: 890-902
        • Jones J.R.
        Reprint of: Review of bioactive glass: From Hench to hybrids.
        Acta Biomater. 2015; 23: S53-S82
        • Wongwiwat P.
        • Boonma A.
        • Lee Y.-S.
        • Narayan R.J.
        Bioceramics in ossicular replacement prostheses: a review.
        J Long Term Eff Med Implants. 2011; 21: 169-183
        • Profeta A.C.
        • Huppa C.
        Bioactive-glass in oral and maxillofacial surgery.
        Craniomaxillofac Trauma Reconstr. 2015; 9: 1-14
        • Lindfors N.C.
        • Hyvönen P.
        • Nyyssönen M.
        • et al.
        Bioactive glass S53P4 as bone graft substitute in treatment of osteomyelitis.
        Bone. 2010; 47: 212-218
        • Drago L.
        • Romanò D.
        • De Vecchi E.
        • et al.
        Bioactive glass bag-S53P4 for the adjunctive treatment of chronic osteomyelitis of the long bones: an in vitro and prospective clinical study.
        BMC Infect Dis. 2013; 13: 584
        • Wen Y.
        • Xun S.
        • Haoye M.
        • et al.
        3D printed porous ceramic scaffolds for bone tissue engineering: a review.
        Biomater Sci. 2017; 5: 1690-1698
        • Lee J.A.
        • Parrett B.M.
        • Conejero J.A.
        • et al.
        Biological alchemy: engineering bone and fat from fat-derived stem cells.
        Ann Plast Surg. 2003; 50: 610-617
        • Tae Young A.
        • Kang J.H.
        • Kang D.J.
        • et al.
        Interaction of stem cells with nano hydroxyapatite-fucoidan bionanocomposites for bone tissue regeneration.
        Int J Biol Macromol. 2016; 93: 1488-1491
        • Meinel L.
        • Fajardo R.
        • Hofmann S.
        • et al.
        Silk implants for the healing of critical size bone defects.
        Bone. 2005; 37: 688-698
        • Pina S.
        • Canadas R.F.
        • Jiménez G.
        • et al.
        Biofunctional ionic-doped calcium phosphates: silk fibroin composites for bone tissue engineering scaffolding.
        Cells Tissues Organs. 2017; 204: 150-163

      References

        • Blokhuis T.J.
        • Arts J.J.C.
        Bioactive and osteoinductive bone graft substitutes: definitions, facts and myths.
        Injury. 2011; 42: S26-S29
        • Bartlett J.G.
        Clostridium infections associated with musculoskeletal-tissue allografts.
        Infect Dis Clin Pract. 2004; 12: 384
        • Giannoudis P.V.
        • Dinopoulos H.
        • Tsiridis E.
        Bone substitutes: an update.
        Injury. 2005; 36: S20-S27
        • Attia T.
        • Woodside M.
        • Minhas G.
        • et al.
        Development of a novel method for the strengthening and toughening of irradiation-sterilized bone allografts.
        Cell Tissue Bank. 2017; 18: 323-334
        • Hedequist D.
        • Yeon H.
        • Emans J.
        The use of allograft as a bone graft substitute in patients with congenital spine deformities.
        J Pediatr Orthop. 2007; 27: 686-689
        • Stryker
        Allograft Bio Implants.
        (Available at:) (Accessed May 14, 2018)
        • Gruskin E.
        • Doll B.A.
        • Futrell F.W.
        • Schmitz J.P.
        • Hollinger J.O.
        Demineralized bone matrix in bone repair: history and use.
        Adv Drug Deliv Rev. 2012; 64: 1063-1077
        • Bostrom M.P.
        • Seigerman D.A.
        The clinical use of allografts, demineralized bone matrices, synthetic bone graft substitutes and osteoinductive growth factors: a survey study.
        HSS J. 2005; 1: 9-18

      Linked Article