Current concepts| Volume 42, ISSUE 5, P367-377, May 2017

Download started.

Ok

The Role of Nerve Graft Substitutes in Motor and Mixed Motor/Sensory Peripheral Nerve Injuries

      Alternatives to nerve autograft have been invented and approved for clinical use. The reported outcomes of these alternatives in mixed motor nerve repair in humans are scarce and marked by wide variabilities. The purpose of our Current Concepts review is to provide an evidence-based overview of the effectiveness of nerve conduits and allografts in motor and mixed sensory/motor nerve reconstruction. Nerve graft substitutes have good outcomes in mixed/motor nerves in gaps less than 6 mm and internal diameters between 3 and 7 mm. There is insufficient evidence for their use in larger-gap and -diameter nerves; the evidence remains that major segmental motor or mixed nerve injury is optimally treated with a cabled nerve autograft.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hand Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Siemionow M.
        • Brzezicki G.
        Chapter 8: Current techniques and concepts in peripheral nerve repair.
        Int Rev Neurobiol. 2009; 87: 141-172
        • Seidel J.A.
        • Koenig R.
        • Antoniadis G.
        • Richter H.P.
        • Kretschmer T.
        Surgical treatment of traumatic peroneal nerve lesions.
        Neurosurgery. 2008; 62 (discussion 664-673): 664-673
        • Brushart T.M.
        Preferential reinnervation of motor nerves by regenerating motor axons.
        J Neurosci. 1988; 8: 1026-1031
        • Brushart T.M.
        Motor axons preferentially reinnervate motor pathways.
        J Neurosci. 1993; 13: 2730-2738
        • Brushart T.M.
        • Seiler IV, W.A.
        Selective reinnervation of distal motor stumps by peripheral motor axons.
        Exp Neurol. 1987; 97: 289-300
        • Belkas J.S.
        • Shoichet M.S.
        • Midha R.
        Peripheral nerve regeneration through guidance tubes.
        Neurol Res. 2004; 26: 151-160
        • Dellon A.L.
        • Mackinnon S.E.
        An alternative to the classical nerve graft for the management of the short nerve gap.
        Plast Reconstr Surg. 1988; 82: 849-856
        • Wangensteen K.J.
        • Kalliainen L.K.
        Collagen tube conduits in peripheral nerve repair: a retrospective analysis.
        Hand (N Y). 2010; 5: 273-277
      1. Albert E. Berichte des Naturwissenschaftlich-medizins in Innsbruck. Innsbruck, Austria: Universitätsverlag Wagner; 1878:97.

        • Hudson T.W.
        • Zawko S.
        • Deister C.
        • et al.
        Optimized acellular nerve graft is immunologically tolerated and supports regeneration.
        Tissue Eng. 2004; 10: 1641-1651
        • Sondell M.
        • Lundborg G.
        • Kanje M.
        Regeneration of the rat sciatic nerve into allografts made acellular through chemical extraction.
        Brain Res. 1998; 795: 44-54
        • Weber R.A.
        • Breidenbach W.C.
        • Brown R.E.
        • Jabaley M.E.
        • Mass D.P.
        A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans.
        Plast Reconstr Surg. 2000; 106 (discussion 1046-1048): 1036-1045
        • Bertleff M.J.
        • Meek M.F.
        • Nicolai J.P.
        A prospective clinical evaluation of biodegradable neurolac nerve guides for sensory nerve repair in the hand.
        J Hand Surg Am. 2005; 30: 513-518
        • Taras J.S.
        • Amin N.
        • Patel N.
        • McCabe L.A.
        Allograft reconstruction for digital nerve loss.
        J Hand Surg Am. 2013; 38: 1965-1971
        • Karabekmez F.E.
        • Duymaz A.
        • Moran S.L.
        Early clinical outcomes with the use of decellularized nerve allograft for repair of sensory defects within the hand.
        Hand (N Y). 2009; 4: 245-249
        • Lohmeyer J.A.
        • Siemers F.
        • Machens H.G.
        • Mailander P.
        The clinical use of artificial nerve conduits for digital nerve repair: a prospective cohort study and literature review.
        J Reconstr Microsurg. 2009; 25: 55-61
        • Haug A.
        • Bartels A.
        • Kotas J.
        • Kunesch E.
        Sensory recovery 1 year after bridging digital nerve defects with collagen tubes.
        J Hand Surg Am. 2013; 38: 90-97
        • Shin R.H.
        • Friedrich P.F.
        • Crum B.A.
        • Bishop A.T.
        • Shin A.Y.
        Treatment of a segmental nerve defect in the rat with use of bioabsorbable synthetic nerve conduits: a comparison of commercially available conduits.
        J Bone Joint Surg Am. 2009; 91: 2194-2204
        • Mackinnon S.E.
        • Dellon A.L.
        A study of nerve regeneration across synthetic (Maxon) and biologic (collagen) nerve conduits for nerve gaps up to 5 cm in the primate.
        J Reconstr Microsurg. 1990; 6: 117-121
        • Archibald S.J.
        • Shefner J.
        • Krarup C.
        • Madison R.D.
        Monkey median nerve repaired by nerve graft or collagen nerve guide tube.
        J Neurosci. 1995; 15: 4109-4123
        • Kaplan H.M.
        • Mishra P.
        • Kohn J.
        The overwhelming use of rat models in nerve regeneration research may compromise designs of nerve guidance conduits for humans.
        J Mater Sci Mater Med. 2015; 26: 226
        • Rosson G.D.
        • Williams E.H.
        • Dellon A.L.
        Motor nerve regeneration across a conduit.
        Microsurgery. 2009; 29: 107-114
        • Dienstknecht T.
        • Klein S.
        • Vykoukal J.
        • et al.
        Type I collagen nerve conduits for median nerve repairs in the forearm.
        J Hand Surg Am. 2013; 38: 1119-1124
        • Moore A.M.
        • Kasukurthi R.
        • Magill C.K.
        • Farhadi H.F.
        • Borschel G.H.
        • Mackinnon S.E.
        Limitations of conduits in peripheral nerve repairs.
        Hand (N Y). 2009; 4: 180-186
        • Ray W.Z.
        • Mackinnon S.E.
        Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy.
        Exp Neurol. 2010; 223: 77-85
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        • Group P.
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        Int J Surg. 2010; 8: 336-341
      2. Howick J, Chalmers I, Glasziou P, et al. The 2011 Oxford CEBM Evidence Levels of Evidence (Introductory Document). Available at: http://www.cebm.net/wp-content/uploads/2014/06/CEBM-Levels-of-Evidence-Introduction-2.1.pdf. Accessed March 28, 2017.

        • Stanec S.
        • Stanec Z.
        Reconstruction of upper-extremity peripheral-nerve injuries with ePTFE conduits.
        J Reconstr Microsurg. 1998; 14: 227-232
        • Braga-Silva J.
        The use of silicone tubing in the late repair of the median and ulnar nerves in the forearm.
        J Hand Surg Br. 1999; 24: 703-706
        • Lundborg G.
        • Rosen B.
        • Dahlin L.
        • Holmberg J.
        • Rosen I.
        Tubular repair of the median or ulnar nerve in the human forearm: a 5-year follow-up.
        J Hand Surg Br. 2004; 29: 100-107
        • Ducic I.
        • Maloney Jr., C.T.
        • Dellon A.L.
        Reconstruction of the spinal accessory nerve with autograft or neurotube? Two case reports.
        J Reconstr Microsurg. 2005; 21 (discussion 34): 29-33
        • Ashley Jr., W.W.
        • Weatherly T.
        • Park T.S.
        Collagen nerve guides for surgical repair of brachial plexus birth injury.
        J Neurosurg. 2006; 105: 452-456
        • Donoghoe N.
        • Rosson G.D.
        • Dellon A.L.
        Reconstruction of the human median nerve in the forearm with the NeurotubeTM.
        Microsurgery. 2007; 27: 595-600
        • Gu J.
        • Hu W.
        • Deng A.
        • Zhao Q.
        • Lu S.
        • Gu X.
        Surgical repair of a 30 mm long human median nerve defect in the distal forearm by implantation of a chitosan-PGA nerve guidance conduit.
        J Tissue Eng Regen Med. 2012; 6: 163-168
        • Kuffler D.P.
        • Reyes O.
        • Sosa I.J.
        • Santiago-Figueroa J.
        Neurological recovery across a 12-cm-long ulnar nerve gap repaired 3.25 years post trauma: case report.
        Neurosurgery. 2011; 69: E1321-E1326
        • Chiriac S.
        • Facca S.
        • Diaconu M.
        • Gouzou S.
        • Liverneaux P.
        Experience of using the bioresorbable copolyester poly(DL-lactide-epsilon-caprolactone) nerve conduit guide NeurolacTM for nerve repair in peripheral nerve defects: report on a series of 28 lesions.
        J Hand Surg Eur Vol. 2012; 37: 342-349
        • Boeckstyns M.E.
        • Sorensen A.I.
        • Vineta J.F.
        • et al.
        Collagen conduit versus microsurgical neurorrhaphy: 2-year follow-up of a prospective, blinded clinical and electrophysiological multicenter randomized, controlled trial.
        J Hand Surg Am. 2013; 38: 2405-2411
        • Liodaki E.
        • Bos I.
        • Lohmeyer J.A.
        • et al.
        Removal of collagen nerve conduits (NeuraGen) after unsuccessful implantation: focus on histological findings.
        J Reconstr Microsurg. 2013; 29: 517-522
        • Mackinnon S.E.
        • Hudson A.R.
        Clinical application of peripheral nerve transplantation.
        Plast Reconstr Surg. 1992; 90: 695-699
        • Mackinnon S.E.
        Nerve allotransplantation following severe tibial nerve injury. Case report.
        J Neurosurg. 1996; 84: 671-676
        • Mackinnon S.E.
        • Doolabh V.B.
        • Novak C.B.
        • Trulock E.P.
        Clinical outcome following nerve allograft transplantation.
        Plast Reconstr Surg. 2001; 107: 1419-1429
        • Brooks D.N.
        • Weber R.V.
        • Chao J.D.
        • et al.
        Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions.
        Microsurgery. 2012; 32: 1-14
        • Squintani G.
        • Bonetti B.
        • Paolin A.
        • et al.
        Nerve regeneration across cryopreserved allografts from cadaveric donors: a novel approach for peripheral nerve reconstruction.
        J Neurosurg. 2013; 119: 907-913
        • Berrocal Y.A.
        • Almeida V.W.
        • Levi A.D.
        Limitations of nerve repair of segmental defects using acellular conduits.
        J Neurosurg. 2013; 119: 733-738
      3. Gartner Inc. Gartner Hype Cycle. Available at: http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp. Accessed August 17, 2016.

        • Shahgholi L.
        • Bengtson K.A.
        • Bishop A.T.
        • et al.
        A comparison of manual and quantitative elbow strength testing.
        Am J Phys Med Rehabil. 2012; 91: 856-862
        • MacAvoy M.C.
        • Green D.P.
        Critical reappraisal of Medical Research Council muscle testing for elbow flexion.
        J Hand Surg Am. 2007; 32: 149-153
        • Sammer D.M.
        • Kircher M.F.
        • Bishop A.T.
        • Spinner R.J.
        • Shin A.Y.
        Hemi-contralateral C7 transfer in traumatic brachial plexus injuries: outcomes and complications.
        J Bone Joint Surg Am. 2012; 94: 131-137
        • Whitlock E.L.
        • Tuffaha S.H.
        • Luciano J.P.
        • et al.
        Processed allografts and type I collagen conduits for repair of peripheral nerve gaps.
        Muscle Nerve. 2009; 39: 787-799
        • Giusti G.
        • Willems W.F.
        • Kremer T.
        • Friedrich P.F.
        • Bishop A.T.
        • Shin A.Y.
        Return of motor function after segmental nerve loss in a rat model: comparison of autogenous nerve graft, collagen conduit, and processed allograft (AxoGen).
        J Bone Joint Surg Am. 2012; 94: 410-417
        • Chanson L.
        • Michon J.
        • Merle M.
        • Delagoutte J.P.
        Étude des résultats de la réparation de 85 nerfs dont 49 gros nerfs [in French].
        Rev Chir Orthop. 1977; 63: 153-160

      Editor’s Suggestions for More Information

      1. Comparison of outcomes from processed nerve allograft, hollow tube conduits, and autograft in peripheral never repair (see Video). Safa B. Talk presented at: American Society for Surgery of the Hand Annual Meeting: September 18–20, 2014; Boston, MA. Also available on Hand-e: http://www.assh.org/Hand-e.

      2. Outcomes of digital nerve repair with processed nerve allograft and hollow tube conduits (see Video). Pet M. Talk presented at: American Society for Surgery of the Hand Annual Meeting: September 10–12, 2015; Seattle, WA. Also available on Hand-e: http://www.assh.org/Hand-e.

      3. Short gap entubulation (see Video). Edwards SG. Talk presented at: American Society for Surgery of the Hand & American Association for Hand Surgery Specialty Day: March 28, 2015; Las Vegas, NV. Also available on Hand-e: http://www.assh.org/Hand-e.

      4. Allograft reconstruction for digital nerve loss (see Video). Taras JS. Talk presented at: American Society for Surgery of the Hand & American Association for Hand Surgery Specialty Day: March 15, 2014; New Orleans, LA. Also available on Hand-e: http://www.assh.org/Hand-e.

      5. The peripheral nerve gap: repair, replace, or transfer? (see Video). Taras JS. Talk presented at: American Society for Surgery of the Hand Annual Meeting: September 18–20, 2014; Boston, MA. Also available on Hand-e: http://www.assh.org/Hand-e.

      Linked Article