Purpose
The purpose of this study was to evaluate the efficacy of “paralyzed” nerve transfer
(ie, transfer of an involuntary, nondegenerated, electrically excitable nerve onto
an involuntary, degenerated, non–electrically excitable nerve) and functional electrical
stimulation for reinnervation. We hypothesized that lower motor neuron cell body continuity
with the motor cortex, via intact upper motor neurons, is not necessary for reinnervation
of the extremities.
Methods
Fischer 344 rats had lower thoracic spinal cord injury (SCI) followed by unilateral
tibial nerve transection and delayed peroneal (“paralyzed”) to tibial nerve transfer
(group A) or primary neurorrhaphy (group B). Control groups had SCI and a unilateral
hindlimb incision and nerve exposure only (group C) or a unilateral hindlimb disection
and transection of both the tibial and peroneal nerves (group D). Three months after
surgery, the proximal peroneal (group A) or proximal tibial (groups B, C, and D) nerves
were electrically stimulated in vivo, and gastrocnemius force production was measured on both the operative and nonoperative
hindlimbs. In addition, the distal tibial nerves from both the experimental and control-side
hindlimbs were sectioned and stained with anti-neurofilament protein to determine
total axon counts.
Results
Mean gastrocnemius force return and mean axonal regeneration was 47% and 51%, respectively,
for group A animals (n = 9), 68% and 73% for group B animals (n = 4), 97% and 99%
for group C animals (n = 4), and 0 and 2% for group D animals (n = 4). A 1-way analysis
of variance for independent samples yielded significant differences between groups
A, B, and C for gastrocnemius force return and between all groups for axonal regeneration.
Conclusions
Paralyzed nerve transfer produces a mean of approximately 50% return of gastrocnemius
force and axonal regeneration. Paralyzed nerve transfer combined with functional electrical
stimulation is a viable method for reanimating denervated motor units in the setting
of SCI.
Key words
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of Hand SurgeryAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- A review of surgical rehabilitation of the upper limb in quadriplegia.Paraplegia. 1988; 26: 317-339
- Tendon transfer for the restoration of upper limb function after a cervical spinal cord injury.J Hand Surg. 1984; 9A: 887-893
- Surgical reconstruction in tetraplegia.Hand Clin. 1988; 4: 601-607
- Functional hand surgery following tetraplegia.Arch Phys Med Rehabil. 1996; 77: 86-94
- Results of nerve transfer techniques for restoration of shoulder and elbow function in the context of a meta-analysis of the English literature.J Hand Surg. 2001; 26A: 303-314
- The surgical treatment of brachial plexus injuries in adults.Plast Reconstr Surg. 2007; 119: 73e-92e
- Heterotopic nerve transfers: recent trends with expanding indication.J Hand Surg. 2007; 32A: 397-408
- Tendon transfers and functional electrical stimulation for restoration of hand function in spinal cord injury.J Hand Surg. 1996; 21A: 89-99
- Neuroprosthetics of the upper extremity—clinical application in spinal cord injury and challenges for the future.Acta Neurochir Suppl. 2007; 97: 419-426
- Current surgical therapy for quadriplegia: functional electrical stimulation.Plast Reconstr Surg. 2002; 109: 1378-1385
- Tetraplegia.Hand Clin. 1989; 5: 343-348
- Evaluation of the lower motor neuron integrity of upper extremity muscles in high level spinal cord injury.Spinal Cord. 1999; 37: 585-591
- Satisfaction with upper-extremity surgery in individuals with tetraplegia.Arch Phys Med Rehabil. 2003; 84: 1145-1149
- Neurophysiologic evaluation of lower motor neuron damage in tetraplegia.Muscle Nerve. 1998; 21: 1321-1323
- Direct current electrical conduction block of peripheral nerve.IEEE Trans Neural Syst Rehabil Eng. 2004; 12: 313-324
- Nerve conduction block utilizing high-frequency alternating current.Med Biol Eng Comput. 2004; 42: 394-406
- High-frequency electrical conduction block of mammalian peripheral motor nerve.Muscle Nerve. 2005; 32: 782-790
- Severe paralysis from damage to cervical spinal cord or other causes.in: Canale S.T. Campbell's operative orthopaedics. 11th ed. Mosby, St. Louis2007: 4157-4172
- Amar A.P. Surgical management of spinal cord injury. Blackwell, Boston2007: 1-25
- The intercostal to phrenic nerve transfer: an effective means of reanimating the diaphragm in patients with high cervical spine injury.Plast Reconstr Surg. 2000; 105: 1255-1261
- Triceps denervation as a predictor of elbow flexion contractures in C5 and C6 tetraplegia.Arch Phys Med Rehabil. 2004; 85: 1880-1885
- Reconstruction of high ulnar nerve lesions by distal double median to ulnar nerve transfer.J Hand Surg. 1999; 24: 1185-1191
- Selective restoration of motor function in the ulnar nerve by transfer of the anterior interosseous nerve.J Bone Joint Surg. 2001; 83A: 549-552
Article info
Publication history
Accepted:
November 14,
2008
Received:
June 25,
2008
Footnotes
Financial support for this work was entirely provided by a grant from the National Institute of Neurological Disorders and Stroke (NINDS).
Identification
Copyright
© 2009 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.